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SUMMARY
Precise patterns of synaptic connections between neurons are encoded in their genetic programs. Here, we
use single-cell RNA sequencing to profile neuronal transcriptomes at multiple stages in the developing
Drosophila visual system.We devise an efficient strategy for profiling neurons at multiple time points in a sin-
gle pool, therebyminimizing batch effects andmaximizing the reliability of time-course data. A transcriptional
atlas spanning multiple stages is generated, including more than 150 distinct neuronal populations; of these,
88 are followed through synaptogenesis. This analysis reveals a common (pan-neuronal) program unfolding
in highly coordinated fashion in all neurons, including genes encoding proteins comprising the core synaptic
machinery and membrane excitability. This program is overlaid by cell-type-specific programs with diverse
cell recognitionmolecules expressed in different combinations and at different times.We propose that a pan-
neuronal program endows neurons with the competence to form synapses and that cell-type-specific pro-
grams control synaptic specificity.
INTRODUCTION

Neural circuits in brains fromworms tomammals are largely hard

wired. Genetic andmolecular studies have providedmechanistic

insights into how circuits develop (Sanes and Zipursky, 2020). A

small, largely evolutionarily conserved set of intercellular

signaling molecules and a more diverse set of transcription fac-

tors (TFs) act early in development to pattern neural tissue and

regulate neuronal cell fate (Holguera and Desplan, 2018). TFs

called terminal selectors have been identified that regulate se-

lective features of neurons, such as the specific neurotransmitter

a neuron uses (Hobert and Kratsios, 2019). Combinatorial tran-

scriptional programs have been identified in Drosophila that

specify unique dendritic and axonal morphologies (Enriquez

et al., 2018). At later stages of development, transcriptional pro-

grams also specify patterns of synaptic connectivity, with exam-

ples of specific TFs controlling the expression of genes encoding

proteins that regulate wiring (Morey et al., 2008; Liu et al., 2018).

Recent single-cell sequencing studies in theDrosophila olfactory

and visual systems suggest that a relatively small number of TFs

drive neuron diversity and that a much larger set of cell surface

proteins regulated by them specify patterns of synaptic connec-

tivity (Li et al., 2017a; Kurmangaliyev et al., 2019).

The formation of connections between neurons unfolds during

development in a stepwise fashion. During axon guidance,

growth cones at the leading edge of axons extend along stereo-

typed paths to their target regions. Here, other neurons elaborate
Neur
dendrites. Within the target region, axons intermingle with den-

dritic processes of tens to hundreds of different neuron types.

It is during this period in development that neurites form synaptic

connections and acquire their mature signaling properties.

Whereas genetic and biochemical studies have led to a detailed

molecular description of axon guidance (Dickson, 2002; Tessier-

Lavigne and Goodman, 1996), our understanding of how neu-

rites discriminate between one another to select their appro-

priate synaptic partners remains fragmentary (Sanes and Zipur-

sky, 2020). Several recent advances have brightened the

prospects of uncoveringmolecules, mechanisms, and principles

underlying synaptic specificity. Among these, single-cell RNA

sequencing (scRNA-seq) provides a unique opportunity to char-

acterize expression of cell recognition molecules expressed in

synaptic partners during synapse formation.

The Drosophila visual system is well suited to studying the ge-

netic programs of synaptic specificity due to the availability of

synapse-level connectivity maps of more than a hundred well-

defined cell types (Fischbach and Dittrich, 1989; Takemura

et al., 2013, 2015) and the availability of genetic and molecular

tools to manipulate discrete classes of neurons. A number of

recent studies used single-cell sequencing to characterize neu-

rons in the adult fly brain, including the visual system (Davie et al.,

2018; Konstantinides et al., 2018; Croset et al., 2018; Allen et al.,

2020). However, these datasets are of limited use for studying

developmental processes, as transcriptomes during develop-

ment are dynamic and quite different from their adult
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counterparts (Li et al., 2017a; Sarin et al., 2018; Kurmangaliyev

et al., 2019).

Here, we set out to generate a transcriptional atlas of the

developing Drosophila visual system during circuit assembly.

We devised a strategy for single-cell sequencing of multiple

time points in a pooled fashion tominimize the confound of batch

effects. We identified 162 distinct neuronal populations and fol-

lowed 88 of them at seven time points just prior to, during, and

following synapse formation. This enabled us to uncover a com-

mon (pan-neuronal) transcriptional program in all neuron types

that proceeds in a synchronous fashion. This program includes

genes encoding core protein components of synapses and

membrane excitability. The diversity of cell-type-specific pro-

grams was driven by dynamically expressed sets of cell recogni-

tion molecules and other genes involved in intercellular interac-

tions. We propose that the pan-neuronal program endows all

neurons with a competence to form synapses, whereas synaptic

specificity is determined by cell-type-specific repertoires of cell

surface proteins with distinct temporal expression patterns and

recognition specificities.

RESULTS AND DISCUSSION

Profiling of Different Stages of Neuronal Development in
Parallel in a Single Experiment
In this study, we generated gene expression maps of postmitotic

neurons in the fly visual system throughout pupal development

(�100 h) using high-throughput scRNA-seq (Zheng et al.,

2017). During this time, neurons complete axon guidance, elab-

orate distinct axonal and dendritic morphologies, select appro-

priate synaptic partners, form synapses, and acquire distinct

biophysical properties.

Two different experimental designs were used. First, we pro-

filed optic lobes at 24, 48, 72, and 96 h after puparium formation

(APF) (Figures 1A andS1). Each time pointwas profiled as a sepa-

rate experiment, and for the 48-h time point, we profiled two inde-

pendent samples.We refer to this dataset asW1118based on the

strain used for these experiments. This provided a high-resolution

dataset for unsupervised identification of cell types at different

stages of development. The largest number of cells (51,000)

was profiled at 48 h APF, when the transcriptional differences be-

tween neuronal cell types were maximal (Li et al., 2017a).

A second set of experiments was undertaken to follow

changes in gene expression at 12-h intervals to more precisely

define the developmental trajectory of each cell type (Figures

1B and S1). We developed a strategy to profile neurons from

multiple time points in a single experiment. This strategy exploits

natural genetic variation in wild-type strains from the Drosophila

Genetic Reference Panel (DGRP) to mark cells isolated at

different developmental stages (Kang et al., 2018; Mackay

et al., 2012; Huang et al., 2014). Males from individual DGRP

strains were crossed to females from a common reference strain

(W1118) to reduce differences in genetic background (Fear et al.,

2016). Pupae from the resulting progeny were collected every

12 h from 0 to 96 h APF. For every time point, we staged three

individual animals, each tagged by a unique wild-type genotype.

Optic lobes for all time points were dissected, pooled, and pro-

cessed as a single sample from tissue dissociation to
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sequencing. The resulting single-cell transcriptomes for each

time point and individual animals were separated based on

SNPs (single-nucleotide polymorphisms) captured in mRNA se-

quences and matched with the genotypes of parental strains

(Figure 1C). In this way, we profiled cells at nine stages of devel-

opment with three biological replicates for each time point (total

27 samples) in a single experiment. We performed two rounds of

this experiment with reshuffled wild-type parental genotypes

(Figures 1B and S1).

Profiling pools of cells together from all time points in a single

experiment has several advantages. First, it is highly efficient

and cost effective. The entire experiment, from genetic crosses

to single-cell capture, took �2 weeks. Second, it largely elimi-

nates batch effects. An inherent limitation in the conventional

design of scRNA-seq is the technical variation (batch effects) be-

tween different samples (Figure S2). In droplet-based scRNA-seq,

for instance, mRNA released from tissue dissociation prior to cell

capture is a source of contaminants confounding comparison be-

tween samples. In the conventional design, for instance, a

contaminant (e.g., a transcript expressed at high levels at a spe-

cific time in a subset of cells) may appear as ubiquitously upregu-

lated at this time in all neurons. In the pooled design, however,

background contaminants that change with time are distributed

among all cells and times and thus are not erroneously attributed

to biological differences. Similarly, in pooled samples, other sour-

ces of technical variability of unknown etiology arising in the con-

ventional design are eliminated. Finally, genetic multiplexing en-

ables identification of cell doublets, further improving the quality

of datasets and reducing cost throughmaximizing single-cell cap-

ture rates in scRNA-seq platforms (Kang et al., 2018).

In summary, we generated a comprehensive dataset of gene

expression in visual system neurons covering every 12 h of pupal

development. After quality control, the dataset comprises

208,976 single-cell transcriptomes with a median of 1,650 genes

and 5,148 transcripts detected per cell (minimum 2,000 tran-

scripts). Each of the W1118 and DGRP approaches represented

approximately half of the dataset. The complete experimental

design and distribution of cells across time points are shown in

Figure S1.

A Transcriptional Atlas of the Developing Drosophila

Visual System
Transcriptional differences between time points for a single

neuronal cell type can be comparable to the differences between

cell types (Li et al., 2017a; Sarin et al., 2018). Therefore, to follow

individual cell types over time, we first integrated single-cell da-

tasets across different stages of development. Both W1118 and

DGRP samples were analyzed together to achieve maximal res-

olution in cell type diversity and to generate a unified atlas of

transcriptional cell types. Samples from 0 and 12 h APF differed

substantially from other time points both in tissue composition

and coverage and were analyzed separately (the early dataset).

The main analysis was focused on samples from 24 to 96 h

APF (the main dataset).

The integrative analysis of the main dataset was performed us-

ing CCA (canonical correlation analysis)- and MNN (mutual near-

est neighbors)-based workflow implemented in Seurat 3 (Stuart

et al., 2019). The integration was performed on the levels of
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Figure 1. Transcriptional Profiling of Multiple Stages of Neuronal Development in a Single Experiment

Schematics of experimental designs.

(A) Conventional design (W1118 dataset). Four stages of pupal development were profiled in separate experiments.

(B) Pooled design (Drosophila Genetic Reference Panel [DGRP] dataset). Nine stages of pupal development were pooled and profiled in the same experiment.

Cells from each time point were tagged using three unique wild-type strains from the DGRP. Wild-type strains were reshuffled between time points in two in-

dependent replicates.

(C) Single-cell transcriptomes for each time point were separated based on SNPs (single-nucleotide polymorphisms) captured in mRNAmolecules andmatching

with unique genotypes of pupae.

In the conventional design, biological differences between time points cannot be separated from technical variation between different samples. In the pooled

design, differences between time points are independent of technical variation between samples. This minimizes the confound of batch effects on constructing

an accurate time series of gene expression between time points (see effects on background contributed by ambient RNA in Figure S2). See also Figure S1 for

details on experimental design and workflow of the analysis.
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individual time points and replicates. An integrated dataset was

used for dimensionality reduction followed bya graph-based clus-

teringmethod that revealed 196 transcriptionally distinct cell pop-

ulations (see STAR Methods for details). The results of dataset

integration and clustering analysis were visualized using t-distrib-

uted stochastic neighbor embedding (tSNE) plots (Figures 2 and

S3). Importantly, the integrative analysis was used strictly for joint

clustering of cell types across different samples (i.e., time points

and replicates). Oncewe identified clusters, however, we returned

to the original (pre-integration) normalized gene expression values

for each time point and sample (Figure 2D).

Most of the clusters were detectable in all samples and

comprise a comparable fraction of cells across different time
points, while some were distributed less evenly (Figure S3).

The variation in cluster proportions could be due to technical rea-

sons (e.g., sampling variation or differences in tissue dissections)

or biological differences in cell composition at different stages.

Unsupervised analysis grouped clusters into four major classes

(Figure S4), which were annotated based on expression of

known marker genes (see STAR Methods for details): 162 clus-

ters of neurons (elav+), 3 clusters of photoreceptor cells (chp+),

19 clusters of glia (repo+), and 11 clusters of non-neuronal cells

of unknown origin (elav�/repo�).
Next, we matched neuronal clusters to previously identified

cell types. As a reference, we used two recent datasets from

bulk sequencing of several dozen morphologically distinct cell
Neuron 108, 1045–1057, December 23, 2020 1047
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Figure 2. A Transcriptional Atlas of the Developing Drosophila Visual System

(A) tSNE plot of the main dataset. This includes samples from 24 to 96 h APF (DGRP and W1118). All samples were integrated and clustered together. Distinct

transcriptional clusters are color coded and labeled by identities of clusters (i.e., names of neurons for known morphological cell types).

(B) The proportion of each neuronal cluster relative to the total number of neurons (median across all samples). Vertical bars correspond to the neuronal clusters

ordered by average proportion (selected clusters of known morphological cell types are highlighted). All of the identified unicolumnar neurons were among the

largest 50 clusters.

(legend continued on next page)
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Figure 3. Regional Specialization of Neurons
(A and B) Transcriptionally distinct variants of Tm9 (A) and T4/T5 (B) neurons. The arrangement of cell types in the optic lobe and tSNE plots with expression

patterns of marker genes for newly identified subtypes are shown on the left in each panel. All Tm9 (A) and T4/T5 (B) neurons are labeled in magenta. Expression

patterns of marker genes in adult are shown in green. (A) There are two transcriptionally distinct populations of Tm9 neurons. They are defined by mutually

exclusive expression of Wnt10 andWnt4 (not shown) genes. Wnt10 is restricted to Tm9 neurons targeting the dorsal half of the lobula. The middle row shows the

cropped lobula 1 layer (Lo1). (B) A subpopulation of T4 neurons is defined by expression of CG15537 restricted to T4 neurons targeting the dorsal third of the

medulla and lobula plate layers a/b. The middle row shows the cropped medulla 10 layer (M10). Scale bar, 20 mm.
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types in the adult (Davis et al., 2020; Konstantinides et al., 2018).

We identified a set of cluster-specific marker genes and used

them for correlation analysis (Figures S5A and S5B). In addition,

we used expression patterns of TFs to manually curate matched

clusters (Figure S5C). Most of the reference cell types had a one-

to-one match with a single cluster. In a few cases, a reference

dataset had a high correlation withmultiple clusters representing

further heterogeneity. For example, T4/T5 neurons matched

eight clusters with similar correlation values. Expression of pre-

viously identified marker genes allowed us to match these clus-

ters to the eight known morphological subtypes of T4/T5 neu-

rons (Kurmangaliyev et al., 2019). Moreover, we identified new

transcriptional subtypes (e.g., two Dm3 and two Tm9 neurons;

see below). Overall, cell-type-specific expression profiles of

known morphological cell types were in good agreement with

previously validatedmarker genes (e.g., Tan et al., 2015, Cosma-

nescu et al., 2018). For example, the TF bsh has been shown to

be expressed in three cell types (Hasegawa et al., 2013), and it

was detected only in the corresponding clusters (Figure S5C).

The transcriptional similarities between clusters were also

consistent with known anatomical and functional relationships

between cell types (Figure S6). In total, we were able to match

identities of 58 neuronal clusters to known morphological cell

types (Figure 2A).

The optic lobe neuropils consist of repeated columns with ste-

reotyped cell-type composition and connectivity (Takemura
(C–E) Examples of cell-type-specific transcriptional data for Mi1 (red) and Mi4 neu

we returned to the original (pre-integration) normalized expression values for eac

withMi1 andMi4 clusters highlighted. (D) Examples of cell-type-specific gene exp

(i.e., time points and replicates; for instance, there are four individual replicates at

are shown for both the early (0–12 h) and main (24–96 h) datasets. Values are show

neurons (adapted from Fischbach and Dittrich, 1989).

See also Figures S3–S7.
et al., 2015). Many cell types are present in a single copy in

each column (unicolumnar neurons). In agreement with this, all

matched unicolumnar neurons were among the largest 40–50

transcriptional clusters in our data, and each represented on

average 0.7%–1.7% of the cells in each sample. We estimate

that these 40–50 largest clusters represent cell types with

roughly one copy per column (Figure 2B).

In parallel to the main atlas, we performed similar integrative

analysis for early time points (i.e., 0 and 12 h APF; Figure S7).

These samples were integrated together with samples from

24 h APF to generate a separate atlas covering the first day of pu-

pal development (from 0 to 24 h APF). Since cells from 24 h APF

were present in both parts of the atlas, we were able to match

clusters between the two datasets. The differences between

cell types were less prominent at earlier stages, and fewer cells

were profiled. As a result, many related cell types were not

resolved into separate clusters. For example, Tm1, Tm2, and

Tm4 neurons and one unidentified cluster (N19) grouped

together, suggesting a close developmental relationship be-

tween these cell types.

Transcriptional heterogeneity can reflect neuronal diversity

beyond morphological cell types. For example, Dm8 neurons

comprise two transcriptionally distinct subtypes with the same

morphology but different synaptic specificities (Menon et al.,

2019; Courgeon and Desplan, 2019). We found new subtypes

for Dm3, Tm9, and T4 neurons. Tm9 neurons, for instance,
rons. Importantly, once we identified clusters through the integrative analysis,

h time point and sample. (C) tSNE plots of the main dataset split by time points

ression patterns. Stars indicate average expression levels in individual samples

48 h). Lines indicate average expression for a given cell type. Expression values

n in log-scaled normalized expression levels. (E) Morphologies of Mi1 and Mi4

Neuron 108, 1045–1057, December 23, 2020 1049



Figure 4. A Common (Pan-neuronal) Program of Neuronal Development

(A) Distribution of genes in different categories expressed in neurons (left), enriched in neurons compared to glia (neuron-specific) (middle), and coordinated in a

pan-neuronal fashion (right). Functional categories are color coded, including transcriptions factors (TFs), RNA-binding proteins (RBPs), non-coding RNA

(ncRNA), cell adhesion molecules (CAMs), receptors and ligands (RECs), ion channels (ICs), synaptic proteins (SYNs), and ribosomal genes (RP).

(B–D) Expression patterns of selected pan-neuronally coordinated genes for 88 neurons (solid) and 6 glial (dashed) cell types from 24 to 96 h APF. For a subset of

cell types, the expression is also shown at 0 and 12 h APF (i.e., clusters from the early dataset). Colors indicate functional categories of genes as in (A). Plots

shown in log-scaled normalized expression levels. (B) Synaptic proteins and ICs. (C) Transcription factors (TFs) and RNA-binding proteins (RBPs). (D) Receptors

and CAMs.

(E) For comparison, examples of broadly expressed genes with cell-type-specific expression patterns that are not coordinated are shown. Expression patterns of

all 200 pan-neuronally coordinated genes ordered by average correlation values are shown in Figures S8 and S9.
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formed two clusters defined by mutually exclusive expression of

Wnt4 andWnt10 genes. Wnt10 expression in vivowas restricted

to dorsal Tm9 neurons (Figure 3A). We conclude that identified

clusters represent ventral (Wnt4+) and dorsal (Wnt10+) subtypes

of Tm9 neurons. We also noticed a stable subpopulation of T4

neurons expressing an uncharacterized gene (CG15537)

throughout development that was enriched in T4 a/b subtypes.

This group of cells did not form a separate cluster at the resolu-

tion of the analysis. The expression of CG15537, however, was

restricted to T4 neurons targeting the dorsal third of the medulla

and lobula plate layers a/b (Figure 3B). The product of CG15537

is predicted to be a cell surface protein with a hormone binding

domain. Among the other genes specific to the same subpopu-

lation of T4 neurons are a neuropeptide receptor (TrissinR) and

Tbh, a key component of the octopamine biosynthesis pathway.
1050 Neuron 108, 1045–1057, December 23, 2020
We hypothesize that these neurons are a regional T4 subtype

with distinct neuromodulatory characteristics. In this way, we

found and validated two cases of transcriptionally defined

regional subtypes of neurons with unique spatial distributions.

The discovery of new subtypes, even for such well-studied cell

types as T4/T5 neurons, underscores the power of single-cell

sequencing to reveal subtle aspects of cellular diversity

Taken together, we generated a comprehensive transcrip-

tional atlas of the developingDrosophila visual system. This atlas

covers more than 150 transcriptionally distinct neuronal popula-

tions, including most of the known abundant cell types. The one-

to-one correspondence between transcriptional clusters and

known morphological cell types, the expression of known

markers, and the match with the expected proportions of cells

indicate that this is a highly reliable resource for following
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individual cell types at multiple stages of development (Fig-

ure 2C). We tracked 88 neuronal cell types every 12 h of pupal

development from 24 to 96 h APF (minimum of 10 cells in either

DGRP replicate). This largely encompasses developmental

times preceding synapse formation through the formation of

the mature connectome. We also tracked 22 of these cell types

in the early dataset (both at 0 and 12 h APF) covering all 100 h of

pupal development. The cell-type-specific gene expression pro-

files were highly reproducible across replicates (Figure 2D). For

an additional transcriptional analysis of the developing

Drosophila visual system, see the contemporaneous study

from the Desplan lab (Özel et al., 2020).

Common and Cell-type-Specific Components of
Neuronal Genetic Programs
A Common (Pan-neuronal) Program of Neuronal

Development

All neurons share similar properties (e.g., synaptic transmission

and membrane excitability). We sought to assess whether there

was a common neuronal differentiation pathway giving rise to

these features or whether they emerge in different ways in

different neurons.

To do so, we followed 88 neuronal and 6 glial cell types from 24

to 96 h APF (see STAR Methods for details). First, we defined

neuron-specific genes that were highly enriched in neurons

compared to glia. Genes known to be involved in neuronal devel-

opment and function were enriched among neuron-specific

genes (Figure 4A).

Neuron-specific genes showed a wide range of temporal dy-

namics during development. We calculated Pearson’s correlation

coefficients between expression patterns of each gene across

different cell types and averaged them using Fisher’s Z transfor-

mation (Corey et al., 1998). Many neuron-specific genes were ex-

pressed in a highly coordinated fashion across different cell types.

We hypothesize that they are part of a common genetic program

unfolding in all neurons in parallel (a ‘‘pan-neuronal program’’).

Pan-neuronal genes were defined using the following criteria: (1)

a gene was detected in at least half the neuronal cell types, and

(2) the average Pearson’s correlation coefficient was >0.75 (see

STAR Methods for details). In total, 200 genes met these criteria

(Figure 4A). Expression patterns of these genes are shown in Fig-

ures 4, S8, and S9. The list of reported genes represents a subset

of the top pan-neuronally genes with different levels of coordina-

tion. For instance, increasing the requirement for number of cell

types in which gene was detected to 80% results in a slightly

more conservative list of the genes (182 of 200 reported genes still

pass this criterion).

The core components of synapses and membrane excitability

were among the most tightly coordinated groups of genes (Fig-

ures 4, S8, and S9; Harris and Littleton, 2015). These include

components of the synaptic release machinery (e.g., Snap25

and nSyb), the presynaptic active zone (e.g., Brp and Rbp),

and many ion channels (e.g., Cac and Para). Some of the neuro-

transmitter receptor subunits were also expressed in a highly co-

ordinated fashion in most neurons (e.g., nAChRbeta1 and Rdl),

and others were cell-type specific, with diverse temporal dy-

namics (e.g., nAChRalpha7). A number of genes implicated in

synaptic function in more specific contexts were also regulated
in a pan-neuronal fashion (e.g., Drep2; Andlauer et al., 2014).

These included cell adhesion molecules (CAMs) that could

contribute to synaptic adhesion complexes (Nrx-1, Hasp, and

Lrp4; Li et al., 2007, Nakayama et al., 2016, Mosca et al.,

2017). Other cell recognition molecules that contribute to con-

nectivity in many contexts (e.g., Dscam1 and CadN) were also

expressed pan-neuronally but were not specific to neurons or

did not change appreciably during development. Other genes

with similar expression patterns may represent uncharacterized

constitutive components of synapses.

Most of the genes encoding presynaptic proteins were gradu-

ally upregulated during mid-pupal stages (36–48 h APF) and

peaked �60 h APF. The timing and synchrony of this expression

parallels the synchronous onset of patterned stimulus-indepen-

dent neuronal activity (PSINA) in all neurons at �48 h APF (Akin

et al., 2019). The gene encoding the gap junction protein ShakB

is expressed pan-neuronally and peaks at mid-pupal stages (36–

60 h APF). This would be consistent with a role for gap junctions

at early stages of PSINA; indeed, attenuating ShakB activity de-

presses PSINA throughout the developing visual system (B. Ba-

jar, S.L.Z., and O. Akin, unpublished data). Many other pan-

neuronal genes were expressed transiently at particular stages

of development. These patterns may pinpoint undescribed

discrete steps in neuronal differentiation in all neurons (Figures

4, S8, and S9).

The synchrony of pan-neuronal genes suggests a common

regulatory mechanism underlying their developmental timing.

Several TFs exhibited temporally specific and pan-neuronally

coordinated expression patterns (Figures 4, S8, and S9). Among

these, Blimp-1 andHr3 are controlled by EcR as part of the ecdy-

sone regulated transcriptional cascade. Other genes in this

cascade were also expressed in a tightly coordinated fashion

in all neuron types, but they were not specific to neurons (data

not shown). Another steroid hormone receptor, Hr38, was also

expressed largely in a pan-neuronal fashion and was restricted

to the second half of pupal development. Hr38 is an activity-

regulated immediate early gene (Chen et al., 2016). It has also

been shown to be indirectly activated by ecdysteroids, but inde-

pendently of the EcR pathway (Baker et al., 2003). Other genes

expressed in a pan-neuronal fashion also suggest a role for inter-

cellular signaling in regulating the pan-neuronal program. These

include two G-protein coupled receptors: DopEcR, a receptor

for both ecdysone and dopamine (Srivastava et al., 2005), and

SIFaR, a receptor for the conserved neuropeptide SIFamide

(Jørgensen et al., 2006).

Pan-neuronal genes can also be regulated at post-transcrip-

tional levels. A number of RNA-binding proteins (RBPs) and

long non-coding RNA (lncRNA) geneswere pan-neuronally coor-

dinated (Figures 4, S8, and S9). For instance, Elav has been

shown to function in neuron-specific splicing and lengthening

of 30 untranslated regions (30 UTRs) of transcripts (Lisbin et al.,

2001; Hilgers et al., 2012). Changes in 30 UTR length have

been implicated in the regulation of RNA localization and trans-

lation, two prominent features of gene regulation in neurons

(Tian and Manley, 2017). Two other Elav paralogs, Fne and

Rbp9, implicated in synaptic growth at the larval neuromuscular

junction (Zaharieva et al., 2015), are also expressed pan-neuro-

nally, peaking at mid-pupal stages. RBPs involved in
Neuron 108, 1045–1057, December 23, 2020 1051



Figure 5. Cell-type-Specific Programs of Neuronal Development

(A) Morphologies of eight neuronal cell types in the medulla (adapted from Fischbach and Dittrich, 1989). Arrows indicate direction of further extension of axons

away from the cell body.

(B) Distribution of functional categories of 362 highly variable genes (HVGs; see STAR Methods) expressed in any one of these eight cell types. Functional

categories are color coded as in Figure 4.

(C–F) Heatmaps with expression patterns of selected HVGs from the indicated functional categories. Expression patterns of other HVGs are shown in Figure S10.

(G) Examples of temporal patterns of cell-type-specific genes. dpr17 is expressed with different dynamics and expression levels in different cell types. VAChT is

also expressed in cell-type-specific fashion, but temporal patterns and expression levels are coordinated across cell types. Expression patterns from seven time

points at 12-h intervals between 24 and 96 h APF are shown. Values are shown in log-scaled normalized expression levels.
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translational regulation, such as Bol, are also expressed pan-

neuronally. Bol is an inhibitor of axon pruning in the mushroom

body (Hoopfer et al., 2008) but may act more broadly to modu-

late expression of a core set of neuronal genes.

Taken together, these data suggest that the expression of

pan-neuronal genes may be regulated at both the transcriptional

and post-transcriptional levels and may, in addition, be coordi-

nated by intercellular signaling.
1052 Neuron 108, 1045–1057, December 23, 2020
Cell-type-Specific Programs of Neuronal Development

Neurons exhibit great diversity in their terminal morphologies,

connectivity patterns, and physiological properties. We sought

to characterize differences in transcriptomes that could under-

lie the development of these cell-type-specific features of

neurons.

To explore these differences, we focused on eight cell types

representing different morphological and functional classes of
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neurons (Figure 5A). Some of them represent pairs of anatomi-

cally related neurons with different connectivity patterns (e.g.,

C2/C3 and Tm1/Tm2). We defined a set of 362 highly variable

genes that were differentially expressed among these cell types

(see STAR Methods for details). They represented 12% of all ex-

pressed genes. Three classes, TFs, CAMs, and receptors with li-

gands, accounted for 41% of highly variable genes (Figure 5B).

TFs and CAMs were previously shown to be primary drivers of

transcriptional diversity of neurons in different parts of the ner-

vous system, both during development and in adults (Li et al.,

2017a; Allen et al., 2020).

The expression patterns of TFs and CAMs were qualitatively

different (Figures 5C and 5D). Most TFs were expressed in a bi-

nary fashion across cell types (i.e., on/off manner) and were ex-

pressed throughout development. Closely related cell types

often expressed similar combinations of TFs (e.g., C2/C3 cells).

Each neuron expresses discrete combinations of TFs that define

their cell type. CAMs were more volatile in their expression pat-

terns (Figure 5D). Many were expressed transiently during devel-

opment, and their specificity could be switched between cell

types at different time points. Moreover, quantitative differences

in expression levels between neurons or in the same neuron at

different developmental times were common. For example,

dpr17 was expressed at higher levels but with different temporal

patterns by Tm1 (36–48 h APF) and C3 cells (48–96 h APF) and at

lower levels and with similar temporal patterns by Tm2 and Mi4

cells (72–84 h APF). Thus, neurons express repertoires of

CAMs with continuous variation in their expression levels. These

diverse and rapidly changing cell recognition landscapes mirror

the changes inmorphology and patterns of synaptic connections

elaborated by different neurons.

Genes encoding neurotransmitter-specific functions exhibited

interesting temporal patterns of expression. For example, the ve-

sicular acetylcholine transporter (VAChT) is expressed exclu-

sively by cholinergic neurons. However, the temporal dynamics

and expression levels of VAChT are tightly coordinated between

different types of cholinergic neurons (Figure 5G). Thus, the

choice of neurotransmitter is strictly cell-type specific, but the

temporal patterns of expression are shared between different

cell types.

Neurons also expressed genes involved in neuronal circuit

functions in cell-type specific ways. These included genes en-

coding neurotransmitter biosynthetic enzymes, transporters, re-

ceptors, and ion channel subunits (Figure 5E). These genes can

define functional diversity of neurons in adult circuits. For

example, different combinations of neurotransmitter receptor

subunits could result in distinct properties of synaptic connec-

tions. Interestingly, some of the genes that control synaptic

communication and membrane excitability in the adult were

also expressed during development. They may regulate intercel-

lular communication underlying circuit assembly, most notably

during the second half of pupal development in which each

neuron type exhibits unique patterns of neuronal activity

(i.e., PSINA).

Neuronal diversity is further shaped by differential expression

of genes involved in post-transcriptional and post-translational

mechanisms of gene regulation. We identified a number of

cell-type specific RBPs and lncRNAs (Figure 5F). These genes
could contribute to cell identity at post-transcriptional levels.

For example, expression of the cell-type-specific RBP muscle-

blind (Mbl) regulates alternative splicing of pan-neuronally ex-

pressed Dscam2 to generate isoforms with different recognition

specificities (Li and Millard, 2019). We also identified several

genes involved in post-translational modification of proteins,

including glycosylation and proteolytic enzymes, which are ex-

pressed in a cell-type-specific fashion (Figure 5F).

In summary, genetic programs of neuronal development

comprise a common program of neuronal maturation regulating

synapse formation and membrane excitability properties, over-

laid by cell-type-specific programs encoding dramatically

changing repertoires of cell surface proteins. These proteins

regulate interactions between different neuron types controlling

the assembly and specificity of connections between neurons.

Approaching Synaptic Specificity through
Transcriptomics of Synaptic Partners
Each neuron type in the fly visual system has a unique set of syn-

aptic inputs and outputs and each of the different neuron types

profiled expresses cell recognition proteins with different combi-

nations, levels, and temporal profiles. This transcriptional atlas,

in combination with the connectome, provides a resource to

explore synaptic specificity mechanisms by combining it with

developmental, biochemical, and genetic studies (Figure S11).

Here, as an example of how this approach may be applied, we

consider a simpler part of the connectome in the lamina and

use a retrospective analysis to correlate expression data with

previously described biochemical and genetic studies (Figure 6).

During early pupal development, L4 neurons extend dendrites

that contact L1 and L2 axons. Later in pupal development, L4

selectively forms synapses with L2 (Rivera-Alba et al., 2011).

Previous genetic studies have shown that three different families

of cell recognition molecules of the immunoglobulin superfamily

regulate this process. Dscam2 and Dscam4 are required for tar-

geting of L4 dendrites to a bundled pair of L1 and L2 axons (Ta-

dros et al., 2016). Kirre, a synaptic adhesion protein, is required

for synapses between L4 and L2 (L€uthy et al., 2014), and DIP-b

promotes L2 specificity (Xu et al., 2019). Previous biochemical

studies have reported the binding specificities of Dscam2 and

Dscam 4 (Millard et al., 2007; Özkan et al., 2013), the affinities

of different Dprs for binding to DIP-b (Cosmanescu et al.,

2018), and the interaction of Kirre with its ligands (Özkan

et al., 2013).

The temporal expression patterns of these genes in L4 are pre-

dictive of their function (Figures 6A–6C). Dscam2 and Dscam4

are expressed during targeting (see Figure S11). As their levels

decrease, there is a concomitant increase in the expression of

Kirre and DIP-b just prior to the onset of synaptogenesis (Figures

6A and 6B). As the Kirre ligands (Kirre itself, Rst, and Hbs) (Özkan

et al., 2013) are expressed in a similar way in L1 and L2, it is un-

likely that Kirre alone determines specificity (Figure 6A). By

contrast, the expression patterns of DIP-b ligands (i.e., Dprs)

and their affinities (Cosmanescu et al., 2018), however, would

favor interactions between L4 and L2, consistent with the

decrease in the fidelity of synaptic specificity seen in DIP-b mu-

tants (Xu et al., 2019) (Figures 6B and 6C). As both the Kirre and

DIP-b synaptic phenotypes are partial, other recognition
Neuron 108, 1045–1057, December 23, 2020 1053
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Figure 6. Cell Surface Interactions between

L4 and L1 or L4 and L2

(A) Expression patterns of kirre, rst, and hbs.

(B) Expression patterns of DIP-b and its Dpr binding

partners from scRNA-seq data in this paper.

Different Dpr proteins bind to DIP-b with different

affinities, as shown in red (Cosmanescu et al., 2018).

(C) Protein interactions regulating synapses be-

tween L4 and L2 are summarized. Kirre is required

for synapses, but its ligands are not differentially

expressed between L1 and L2. DIP-b biases syn-

apses to L2. This may be the result of differential

expression of Dpr paralogs with different affinities

between L1 and L2 (Xu et al., 2019). Interactions

shown are based on genes expressed at 48 h (i.e.,

onset of synapse formation).

(D) Many other cell adhesion proteins of the immu-

noglobulin, leucine-rich repeat, and cadherin su-

perfamilies are also expressed in L1, L2, and L4 at 48

h.Basedonbiochemical studies (Özkanet al., 2013),

these proteinsmay bind to each other on the surface

of opposing membranes as indicated. Values are

shown in log-scaled normalized expression levels.

For expression patterns of these proteins, see Fig-

ure S11. See text for further discussion.
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molecules must act in a redundant fashion during synapse for-

mation (L€uthy et al., 2014; Xu et al., 2019).

We sought to address whether the atlas provides candidates

for these redundant functions. Our dataset is a rich resource

for doing so, allowing us to follow the expression of cell surface

proteins expressed by these neurons during synapse formation

or, of course, in an analogous way for many other synaptic part-

ners in the visual system (Figure S11). At the onset of synapse

formation, eight pairs of recognition proteins (both heterophilic

and homophilic) are expressed in both the synaptic partner L2/

L4 pair and in the L1/L4 pair, which do not form synapses (Fig-

ure 6D). Several of these proteins are associated with synapse

formation in flies and mice (e.g., N-cadherin; Schwabe et al.,

2014), the L1 family protein Nrg (Ango et al., 2004; Tai et al.,

2019), and the mammalian Igsf9b ortholog turtle (Woo et al.,

2013), and these may act in a redundant way with Kirre to regu-

late synapse formation. As different Beat/Side protein family

pairs (Siebert et al., 2009; Özkan et al., 2013; Li et al., 2017b)

are differentially expressed in L1 and L2, they may work in paral-

lel to DIP/Dpr interactions to determine specificity. These inter-

actions may promote synapses between L2/L4, inhibit inappro-

priate L1/L4 synapses, or both. These data support the idea that

multiple protein pairs on opposingmembranesmay contribute to

synapse formation between these neurons, and it is the differ-

ences in the cell-type-specific expression of highly diversified

protein families (i.e., DIPs/Dprs and Beats/Sides) that bias the

specificity of synapse formation toward L2 (Xu et al., 2019).

We have observed a similar level of complexity in the potential

interactions between cell surface proteins expressed by other

neurons. For example, there are over a hundred neuron types

that extend axons and dendrites into the medulla neuropil and

they must discriminate between one another to select appro-

priate synaptic partners. Each neuron expresses many dozens

of cell recognition molecules in a cell-type-specific and tempo-

rally dynamic fashion (Figure S11). These findings provide a mo-
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lecular correlate for the modest phenotypes seen in many wiring

mutants, alluding to marked redundancy. It raises the possibility

that specificity may largely reflect biases in connectivity rather

than all or none selectivity. That is, neurons may select synaptic

partners not by a mechanism demanding an ‘‘exact match’’ be-

tween cell surface molecules but rather by selecting the ‘‘best

match’’ among potential partners. This may confer robustness

to the establishment of a complex stereotyped connectome. Un-

ravelling the precise mechanisms by which this complexity in

cellular recognition landscapes translates into highly specific

patterns of synaptic connectivity will rely on future studies incor-

porating biochemical, genetic, and computational analyses.

Concluding Remarks
Understanding how patterns of synaptic connections are deter-

mined during development remains a central question in neural

development. In this study, we followed the development of 88

different neuron types at many time points spanning synapto-

genesis. In so doing, we uncovered a pan-neuronal program

running synchronously in all neurons regardless of cell type.

This program was enriched, in particular, for synaptic proteins

and proteins regulating electrically excitable membranes. The

neuron-specific expression of pan-neuronal genes may be

controlled by a common gene regulatory program. Alternatively,

each cell type may regulate expression of these genes indepen-

dently through a myriad of cell-type specific regulatory pro-

grams. The coordinated expression of these genes in all neurons

may be controlled by a separate timing mechanism. Whatever

the underlying mechanisms are for regulating this process in a

similar way in all neurons, we speculate that this program en-

dows neurons with a broad potential to form synapses.

By contrast to the pan-neuronal program of development, the

expression of cell recognition molecules is profoundly asynchro-

nous and highly cell-type specific. This diversity mirrors cell-

type-specific morphological changes of axons and dendrites in
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the target region and the complexity and specificity of synaptic

connectivity each neuron elaborates. These rapid changes

may be necessary to choreograph the specific interactions be-

tween the processes of many different neuron types as they

seek to discriminate between appropriate and inappropriate

synaptic partners and determine the number and distribution

of synapses between them. Whether the dynamic expression

pattern we observe is largely cell autonomous in nature or

whether it reflects a dialog between neurons during circuit as-

sembly is unknown. Many signaling pathway components,

including those regulated by neural activity, growth factors, neu-

ropeptides, and ecdysteroids, all of which can influence gene

expression, are expressed in these neurons.

Traditionally, circuit assembly has been studied genetically

one gene at a time. Molecules to study were selected based

upon their patterns of expression or phenotypes of mutants. In

these approaches, investigators were largely ignorant of other

recognition molecules expressed in these neurons. Phenotypes

in almost all cases were incomplete and often embarrassingly

mild, supporting a general consensus in the field that this reflects

substantial redundancy, which is advantageous for constructing

a robust circuit but a bane to researchers. Transcriptome

profiling revealed that each neuron expresses a unique combina-

tion of a vast number of cell recognition molecules, many of

which have the potential to promote interactions between

them. These findings and many genetic studies underscore the

confound of redundancy in studying the logic and molecular

mechanisms underlying specificity. In a broad sense we specu-

late that these proteins act together through common mecha-

nisms and variations on them to sculpt circuitry. Uncovering

the molecular logic of synaptic specificity will rely on combining

transcriptomics with detailed studies of specific synapses using

an increasingly sophisticated tool kit of genetic, biochemical,

physiological, and imaging approaches.

The development of high-throughput single-cell technologies

has led to an exponential increase in transcriptional studies in

many different systems (Zheng et al., 2017). Profiling of multiple

experimental conditions with internal controls for technical vari-

ation in a single experiment contributes to these advances (Kang

et al., 2018). The pooled strategy, as we describe here, can be

easily adapted for a variety of experimental designs, including

comparative studies in different mutant backgrounds or in

altered environments. In principle, similar approaches could be

used in many other systems, where the genotype information

could be obtained in parallel to transcriptional profiling. The rapid

and economically feasible generation of temporally resolved

transcriptional datasets can be used to tackle a variety of long-

standing questions in developmental biology.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

chicken anti-GFP (1:1000) Abcam Cat#13970; RRID:AB_300798

rabbit anti-dsRed (1:200) Clontech Cat#632496; RRID:AB_2737298

rat anti-NCad (1:40) Developmental Studies Hybridoma

Bank

Cat#DN-Ex#8; RRID:AB_528121

goat anti-chicken Alexa Fluor 488 (1:200) Invitrogen Cat#A11039; RRID:AB_142924

goat anti-rabbit Alexa Fluor 568 (1:500) Invitrogen Cat#A11011; RRID:AB_143157

goat anti-rat Alexa Fluor 647(1:500) Invitrogen Cat#A21247; RRID:AB_141778

Chemicals, Peptides, and Recombinant Proteins

Schneider’s Drosophila Medium GIBCO Cat#21720-024

PBS Bioland Scientific LLC Cat#PBS01-03

paraformaldehyde Electron Microscopy Sciences Cat#15710

Triton X-100 Sigma-Aldrich Cat#T9284

Normal Goat Serum Sigma-Aldrich Cat#G6767

Papain Worthington Cat#LK003178

LiberaseTM protease Sigma-Aldrich Cat# 5401119001

EverBrite mounting medium Biotium Cat#23001

Deposited Data

Raw sequencing data and processed

dataset

This paper NCBI GEO: GSE156455

Drosophila melanogaster reference genome

(dm6) and gene annotations (FlyBase,

release 6.29)

Thurmond et al., 2019 https://flybase.org/

Drosophila Genetic Reference Panel

genotypes (DGRP Freeze 2.0)

Mackay et al., 2012 http://dgrp2.gnets.ncsu.edu/

Reference bulk RNA-Seq dataset 1 Davis et al., 2020 NCBI GEO: GSE116969

Reference bulk RNA-Seq dataset 2 Konstantinides et al., 2018 NCBI GEO: GSE103772

Drosophila melanogaster extracellular

domain database (FlyXCBD)

Pei et al., 2018 http://prodata.swmed.edu/FlyXCDB

Experimental Models: Organisms/Strains

D. melanogaster: w[1118] Bloomington Drosophila Stock Center BDSC:5909; RRID:BDSC_5909

D. melanogaster: 23G12-LexA (T4/T5) Bloomington Drosophila Stock Center BDSC:65044; RRID:BDSC_65044

D. melanogaster:24C08-LexA (Tm9) Bloomington Drosophila Stock Center BDSC:62012; RRID:BDSC_62012

D. melanogaster: Wnt10-TG4 Gift from Hugo Bellen CR02107

D. melanogaster: CG15537-TG4 Gift from Hugo Bellen CR02107

D. melanogaster: LexAop-myr::tdTomato Zipursky lab N/A

D. melanogaster: 10XUAS-myr::GFP Bloomington Drosophila Stock Center BDSC:32197; RRID:BDSC_32197

D. melanogaster: DGRP-21 Bloomington Drosophila Stock Center BDSC:28122; RRID:BDSC_28122

D. melanogaster: DGRP-28 Bloomington Drosophila Stock Center BDSC:28124; RRID:BDSC_28124

D. melanogaster: DGRP-40 Bloomington Drosophila Stock Center BDSC:29651; RRID:BDSC_29651

D. melanogaster: DGRP-129 Bloomington Drosophila Stock Center BDSC:28141; RRID:BDSC_28141

D. melanogaster: DGRP-177 Bloomington Drosophila Stock Center BDSC:28150; RRID:BDSC_28150

D. melanogaster: DGRP-181 Bloomington Drosophila Stock Center BDSC:28151; RRID:BDSC_28151

D. melanogaster: DGRP-189 Bloomington Drosophila Stock Center BDSC:28152; RRID:BDSC_28152

D. melanogaster: DGRP-235 Bloomington Drosophila Stock Center BDSC:28275; RRID:BDSC_28275

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

D. melanogaster: DGRP-304 Bloomington Drosophila Stock Center BDSC:25177; RRID:BDSC_25177

D. melanogaster: DGRP-307 Bloomington Drosophila Stock Center BDSC:25179; RRID:BDSC_25179

D. melanogaster: DGRP-320 Bloomington Drosophila Stock Center BDSC:29654;

RRID:BDSC_29654

D. melanogaster: DGRP-324 Bloomington Drosophila Stock Center BDSC:25182; RRID:BDSC_25182

D. melanogaster: DGRP-348 Bloomington Drosophila Stock Center BDSC:55019; RRID:BDSC_55019

D. melanogaster: DGRP-354 Bloomington Drosophila Stock Center BDSC:55020; RRID:BDSC_55020

D. melanogaster: DGRP-355 Bloomington Drosophila Stock Center BDSC:55038;

RRID:BDSC_55038

D. melanogaster: DGRP-374 Bloomington Drosophila Stock Center BDSC:28185; RRID:BDSC_28185

D. melanogaster: DGRP-382 Bloomington Drosophila Stock Center BDSC:28189; RRID:BDSC_28189

D. melanogaster: DGRP-383 Bloomington Drosophila Stock Center BDSC:28190; RRID:BDSC_28190

D. melanogaster: DGRP-391 Bloomington Drosophila Stock Center BDSC:25191; RRID:BDSC_25191

D. melanogaster: DGRP-395 Bloomington Drosophila Stock Center BDSC:55022; RRID:BDSC_55022

D. melanogaster: DGRP-406 Bloomington Drosophila Stock Center BDSC:29657; RRID:BDSC_29657

D. melanogaster: DGRP-437 Bloomington Drosophila Stock Center BDSC:25194; RRID:BDSC_25194

D. melanogaster: DGRP-441 Bloomington Drosophila Stock Center BDSC:28198; RRID:BDSC_28198

D. melanogaster: DGRP-461 Bloomington Drosophila Stock Center BDSC:28200; RRID:BDSC_28200

D. melanogaster: DGRP-492 Bloomington Drosophila Stock Center BDSC:28203; RRID:BDSC_28203

D. melanogaster: DGRP-505 Bloomington Drosophila Stock Center BDSC:55024; RRID:BDSC_55024

D. melanogaster: DGRP-508 Bloomington Drosophila Stock Center BDSC:28205; RRID:BDSC_28205

D. melanogaster: DGRP-589 Bloomington Drosophila Stock Center BDSC:28213; RRID:BDSC_28213

D. melanogaster: DGRP-748 Bloomington Drosophila Stock Center BDSC:28224; RRID:BDSC_28224

D. melanogaster: DGRP-790 Bloomington Drosophila Stock Center BDSC:28232; RRID:BDSC_28232

D. melanogaster: DGRP-805 Bloomington Drosophila Stock Center BDSC:28237; RRID:BDSC_28237

D. melanogaster: DGRP-810 Bloomington Drosophila Stock Center BDSC:28239; RRID:BDSC_28239

D. melanogaster: DGRP-819 Bloomington Drosophila Stock Center BDSC:28242; RRID:BDSC_28242

D. melanogaster: DGRP-850 Bloomington Drosophila Stock Center BDSC:28249; RRID:BDSC_28249

D. melanogaster: DGRP-897 Bloomington Drosophila Stock Center BDSC:28260; RRID:BDSC_28260

Software and Algorithms

Cell Ranger (3.1.0) 10X Genomics https://www.10xgenomics.com/;

RRID:SCR_017344

CrossMap (v0.3.6) Zhao et al., 2014 http://crossmap.sourceforge.net/;

RRID:SCR_001173

samtools/bcftools (1.8) Li, 2011 http://samtools.github.io/; RRID:SCR_005227

demuxlet (version 2) Kang et al., 2018 https://github.com/statgen/popscle

Seurat (3.1.2) Stuart et al., 2019 https://github.com/satijalab/seurat;

RRID:SCR_016341

edgeR (3.26.8) Robinson et al., 2010 https://bioconductor.org/; RRID:SCR_012802

Fiji (ImageJ) ImageJ https://imagej.nih.gov/ij/; RRID:SCR_002285
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, S. Law-

rence Zipursky (LZipursky@mednet.ucla.edu).

Materials Availability
This study did not generate new unique reagents.
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Data and Code Availability
The accession number for the raw sequencing data and the final processed dataset (the atlas) reported in this paper is NCBI GEO:

GSE156455. The atlas includes metadata for individual single cells, single-cell gene expression matrix and tSNE embeddings. Meta-

data for single cells includes sample identities (dataset, time point, replicate, genotype) and cluster identities (i.e., clusters, classes,

types, subtypes).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Genetic design
An overview of the general workflow of single-cell sequencing experiments is shown in Figure S1. Flies were reared at 25�C on stan-

dard medium. For experiments with conventional design (W1118), w[1118] (BDSC #5905) female white pre-pupae (0h APF) were

collected and reared until dissection at target time points (5-6 animals per sample). For experiments with pooled design (DGRP), vir-

gin females w[1118] (BDSC #5905) were crossed to males of 35 isogenic wild-type strains from the Drosophila Reference Genetic

Panel (Mackay et al., 2012; Huang et al., 2014). F1-generation female white pre-pupae were collected and reared until dissection

at target time points. Animals for pooled samples with mixtures of target time points were staged with 12h intervals and were

dissected and processed simultaneously. For every target time point, we used three individual animals with unique genotypes (total

27 animals per sample). For two replicates of DGRP experiments, genotypes used for each time point were reshuffled. All genotypes

used in the study are shown in Figure S1.

Drosophila transgenic lines
The following transgenic lines were used for validation of regional subtypes of Tm9 and T4/T5 neurons: 24C08-LexA (Tm9, BDSC

#62012), 23G12-LexA (T4/T5, BDSC #65044), Wnt10-TG4 (gift from Hugo Bellen, CR01661), CG15537-TG4 (gift from Hugo Bellen,

CR02107), LexAop-myr::tdTomato (Zipursky laboratory), 10XUAS-myr::GFP (BDSC #32197).

METHOD DETAILS

Droplet-based single-cell RNA-Seq
Single-cell suspensions were processed using the 10X Genomics Chromium 30 v3 platform. For W1118 experiments, 4 lanes of

a Chromium Chip were loaded per each sample; for DGRP experiments, 8 lanes of a Chromium Chip were loaded per each

sample (i.e., replicates A and B). Loading volumes were estimated based on cell concentrations to capture around 8,000 single

cells per one lane. Single-cell RNA-Seq libraries were generated using the manufacturer’s protocol, with 12 cycles of PCR

for cDNA amplification. All RNA-Seq libraries were sequenced using 4 lanes of Illumina NovaSeq 6000 S4 platform

(28bp + 150bp).

Tissue dissociation and single-cell suspensions
Optic lobes were collected in a single Eppendorf tube per sample. Brain tissue was incubated in papain (Worthington #LK003178)

and Liberase protease (Sigma-Aldrich #5401119001) cocktail at 25�C for 15 min. Tissue was gently washed twice with PBS, then

washedwith 0.04%BSA in PBS and dissociatedmechanically by pipetting. Cell suspensionwas filtered through a 20 mmcell-strainer

(Corning #352235), stained with DRAQ5 (abcam #ab108410), and sorted by FACS (BD FACSAria II) to isolate single-cells and mea-

sure cell concentrations.

Immunohistochemistry / Immunofluorescence
Brain dissections and immunostainingwere performed as described in (Kurmangaliyev et al., 2019). Brainswere dissected in ice-cold

Schneider’s DrosophilaMedium (GIBCO #21720–024), and fixed in PBS (Bioland Scientific LLC #PBS01-03) containing 4% parafor-

maldehyde (Electron Microscopy Sciences, Cat#15710) for 25 min at room temperature (RT). Brains were rinsed repeatedly with

PBST (PBS containing 0.5% Triton X-100 (Sigma #T9284)), and incubated in blocking solution (PBST con- taining 10% Normal

Goat Serum (Sigma #G6767)) for at least 1 hr at RT prior to incubation with anti- body. Brains were incubated sequentially with pri-

mary and secondary antibodies diluted in blocking solution overnight at 4�C, with at least 2 PBST rinses followed by 2 hr incubations

at RT in between and afterward. Brains were transferred to 50% (for 30 min), then 100% EverBrite mounting medium (Biotium

#23001) and mounted on slides for confocal microscopy.

Primary antibodies and dilutions used in this study: chicken anti-GFP (Abcam #13970, 1:1000), rabbit anti-dsRed (Clontech

#632496, 1:200), rat anti-NCad (Developmental Studies Hybridoma Bank (DSHB) DN-Ex#8, 1:40). Secondary antibodies and dilu-

tions used in this study were as follows: goat anti-chicken Alexa Fluor 488 (AF488) (Invitrogen #A11039, 1:200), goat anti-rabbit

AF568 (Invitrogen #A11011, 1:200), goat anti-rat AF647 (Invitrogen #A21247, 1:500).

Immunofluorescence imageswere acquired using a Zeiss LSM880 confocal microscopewith Zen digital imaging software. Optical

sections or maximum intensity projections were level-adjusted, cropped and exported for presentation using ImageJ software (Fiji).

Reported expression patterns were reproducible across three or more biological samples.
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Confocal microscopy and image analysis
Immunofluorescence images were acquired using a Zeiss LSM 880 confocal microscope with Zen digital imaging software. Optical

sections or maximum intensity projections were level-adjusted, cropped and exported for presentation using ImageJ software (Fiji).

Reported expression patterns were reproducible across three or more biological samples.

QUANTIFICATION AND STATISTICAL ANALYSIS

Raw data processing
Fastq files with raw reads were processed using Cell Ranger (3.1.0) with default parameters. Reference genome and transcriptome

were based on FlyBase (release 6.29, Thurmond et al., 2019).

Demultiplexing of DGRP samples
Single-cell transcriptomes from DGRP samples were demultiplexed based on parental genotypes using demuxlet with default pa-

rameters (version 2, https://github.com/statgen/popscle; Kang et al., 2018). The genotypes of wild-type strains were downloaded

from the DGRP web. site (http://dgrp2.gnets.ncsu.edu/; Mackay et al., 2012; Huang et al., 2014). Demultiplexing was based on ge-

notypes of 35 DGRP strains that were used in experiments (each sample included 27 of them and the remaining genotypeswere used

as negative controls). The coordinates of genomic variants for DGRP strains were updated fromdm3 to dm6 version of theDrosophila

melanogaster reference genome using CrossMap (Zhao et al., 2014). The exonic variants for w[1118] (BDSC #5905) were called

based on BAM files produced by Cell Ranger for W1118 samples. Variants were called using bcftools pipeline with default param-

eters (version 1.8; Li, 2011). The genotypes of F1 heterozygotes were assembled based on parental genotypes. The genomic variants

used for demultiplexing were filtered using following criteria: (1) only biallelic single-nucleotide polymorphisms (SNPs) with maximum

minor allele count of 8 among analyzed DGRP strains; (2) SNPs had to be represented by a reference genome allele in w[1118] strain

(min.depth > 10). In total, 176,636 SNPs were used for demultiplexing. Only 37 of 246,308 cell barcodes (before filtering) were erro-

neously assigned to the genotypes that were not used in the given samples (negative controls), indicating high accuracy of recovered

sample identities of single cells.

Quality control and filtering of single cells
The initial set of cell barcodes called by Cell Ranger were filtered based on following criteria: (1) number of transcripts from 2,000 to

20,000; (2) maximum 10% of mitochondrial transcripts; (3) for DGRP samples, we removed predicted doublets and cells assigned to

wrong genotypes; (4) we also removed cells with more than 3 transcripts aligned to male-specific lncRNA:roX1 and lncRNA:roX2

genes. Only one of the samples had a considerable number of potential male cells suggesting contamination by a male

pupa (W1118, 48h APF, replicate A, 15% of cells). In total, 208,976 cells passed all criteria and were used for further analysis

(Figure S1).

Integrative analysis of the main dataset (24-96h APF)
All steps of single-cell data analysis were performed using methods implemented in Seurat V3 (version 3.1.2; Butler et al., 2018; Stu-

art et al., 2019). Samples from 24h to 96h APF were analyzed together. Raw gene counts were normalized by total number of tran-

scripts per cell and log-transformed (function NormalizeData). Integration was performed on 3000 highly variable genes selected

across all samples (function SelectIntegrationFeatures). We excluded from this set mitochondrial genes, ribosomal protein genes,

genes encoding heat-shock proteins and genes from oxidative phosphorylation complexes (FlyBase gene groups). We performed

integration of samples using ‘‘reference-based’’ implementation of CCA (canonical correlation analysis) and MNN (mutual nearest

neighbors) basedworkflow. The integration was performed on the levels of individual time points and replicates (e.g., DGRP, replicate

A, 96h). W1118 samples from 48h (replicate A) and 72h APF were used as reference datasets, and dimensionality of the dataset was

set to 200 (functions FindIntegrationAnchors and IntegrateData). Integrated dataset was scaled and used for principal component

analysis (PCA). The first 200 PCs were used for graph-based clustering (functions FindNeighbors and FindClusters, k.param = 50,

resolution = 10). The same set of PCs was used to generate t-distributed stochastic neighbor embedding (tSNE) plots, and to

generate a dendrogram of clusters (function BuildClusterTree).

Integrative analysis of the early dataset (0h-24h APF)
DGRP samples from early time points were integrated separately. The analysis was performed similar to the main dataset. We used

DGRP 24h samples as reference datasets. All parameters of the analysis were the same as those used for the main dataset.

Matching transcriptional clusters to major classes of cell types (main dataset)
The first three PCs of integrated dataset separated the major classes of cell types: PC1 separated neurons (elav+) from other pop-

ulations; PC2 separated two groups of non-neuronal clusters from each other (repo+ glia from repo- cells); and PC3 separated photo-

receptor cells (chp+) from the remaining cells. We computed centroids of each cluster in the space of these 3 PCs and applied K-

means clustering. This allowed us to group transcriptional clusters into four major classes of cell types (Figure S4).
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Matching transcriptional clusters to cell types (main dataset)
Neuronal clusters werematched to knownmorphological cell types using two bulk RNA-Seq datasets from adult animals (Davis et al.,

2020; Konstantinides et al., 2018). For Davis et al. (2020) normalized expression profiles per cell type were downloaded from NCBI

GEO: GSE116969 (dataTable4). For Konstantinides et al. (2018), expressionmatrix with raw gene counts was downloaded fromNCBI

GEO:GSE103772. Flybase gene IDswerematched to gene symbols, and gene counts were normalized using edgeR (Robinson et al.,

2010). For both datasets we focused on reference profiles for individual optic lobe neurons; Figures S5A and S5B).

For single-cell transcriptomes, we used cells from the W1118/96h sample. The analysis was performed on original expression

values (i.e., uncorrected expressionmatrix). We computed the average expression profile for each cell type. Next, we identified genes

enriched in each neuronal cluster in the same sample. Cluster-enriched genes were identified usingWilcoxon rank-sum test (function

FindMarkers, fold-change > 2, adjusted p < 0.01). Each cluster was compared to the background set of neurons with equal propor-

tions of cells from each neuronal cluster (max. 30 cells from each cluster). The union of top 20 enriched genes for each cluster was

used for correlation analysis (top marker genes, total 826 genes).

Pearson’s correlation coefficients were computed between log-transformed reference expression profiles and the average

expression profile of each transcriptional cluster for top marker genes (Figures S5A and S5B). Almost all reference datasets had

best mutual match with a single transcriptional cluster (only exclusion was LC16 cells from Davis et al., 2020). Matching of cell types

that were present in both reference datasets were also concordant. In a few cases multiple clusters matched with a single reference

profile with similar correlation values. In these cases, reference cell types included multiple distinct transcriptional subtypes (both

known and newly identified, see main text for details). The final set of matched cell types was manually curated based on expression

of known marker genes (Figure S5C). In particular, we curated known subtypes of T4/T5 neurons, newly identified subtypes for Dm3

and Tm9 neurons, and we also inferred identity of T2a cluster based on similarity to the related and matched T2 and T3 clusters.

We used two levels of cluster identities for few cell types: cell types and cell subtypes. Subtypes were defined for T4/T5 neurons,

Tm9 and Dm3 neurons. All further analyses were performed on the level of cell types (e.g., all T4/T5 neurons are considered as a

single cell type). We also annotated two large clusters of photoreceptors that corresponded to R1-6 and R7/R8 cell types. The re-

maining cluster of R cells represented only 0.3% of photoreceptors and likely represents cells undergoing apoptosis (defined by

expression of grim and rpr). In total, 58 neuronal and 2 photoreceptor clusters were matched to known cell types and subtypes in

the main dataset.

Matching transcriptional clusters to cell types (early dataset)
The early dataset included cells from DGRP/24h samples. These cells were also analyzed in the main dataset and have assigned

cluster and cell-type identities. We used these shared cells to directly transfer cluster identities between two datasets (on the level

of cell types, see above). Clusters from the early and the main datasets were considered matching if the majority of 24h cells in both

clusters were the same (minimum 90% cells in each direction). In this way, we were able to match and transfer identities for 58 of 196

transcriptional clusters from the main to the early dataset (Figure S7). In few cases, matching of closely related clusters were curated

manually (i.e., T4/T5 neurons and photoreceptors). Also note that some of thematched clusters in the early datasets largely consisted

of cells from 24h APF (i.e., was not detected at 0h and 12h APF). 22 neuronal clusters that were matched to the main dataset were

represented by at least 10 cells at both 0h and 12h APF. Some other clusters included cells only from 0h and 12h APF. These clusters

may represent cells from other parts of the brain captured due to differences in tissue dissections at different pupal stages, or repre-

sent transient progenitor populations.

Cell-type-specific transcriptional profiles
The average transcriptional profiles were computed for each cluster at given time point in given sample/replicate (e.g., Mi1 in DGRP,

24h APF, replicate A, see Figure 2D). Averaging was performed in non-log space for the original normalized expression values (i.e.,

uncorrected expression matrix). The downstream analyses of cell-type-specific profiles were focused on DGRP samples (i.e., ana-

lyses of pan-neuronally coordinated and highly variable genes). In particular, we focused on 88 neuronal and 6 glial clusters that could

be followed at every time point from 24h to 96h APF (minimum 10 cells in one of the replicates). Expression values for two DGRP

replicates were further averaged to obtain summarized cell-type-specific transcriptional profiles. For visualizations of cell-type-spe-

cific expression patterns we used log1p-transformed expression values (i.e., log(x+1)). In heatmaps, we capped the maximum

expression values to 20.

Pan-neuronally coordinated genes
The analysis was based on 88 neuronal and 6 glial cell types in DGRP samples from 24h to 96h APF (see above). First, we defined

neuron-specific genes by comparing average expression in neurons and glia (fold-change > 8). For each gene, enrichment was esti-

mated at a time point in which it was expressed in the largest number of neurons, or (in case of ties) with highest average expression.

Next, we computed the average correlation between expression patterns of neuron-specific genes across different neurons. Pear-

son’s correlation coefficients were averaged using Fisher’s Z transformation (Corey et al., 1998). Genes expressed in at least half of

the neurons (min. expression 1, n > 44) and with average Pearson’s correlation coefficient higher than 0.75 were defined as pan-neu-

ronally coordinated genes. The expression levels at earlier time points (for cell types that could be followed in the early dataset) were

used only for visualizations.
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Highly variable genes
The analysis was focused on 8 neuronal cell types from 24h to 96h APF (Figure 5). We determined genes with highly variable expres-

sion patterns across these cell types. Coefficients of variation (CV) were calculated for all genes that were expressed in any of these

cell types (min. expression 1). For each gene, CV was calculated at a time point in which it was expressed in the largest number of

neurons, or (in case of ties) with highest average expression. To take into account the relationship between variability and average

expression, CV values were grouped into 10 bins based on similarity of mean expression and transformed into Z-scores within each

of these bins (scaled CV). We used a cut-off of 1.5 for scaled CV values to define the set of top highly variable genes.

Functional categories of genes
We defined several functional categories of genes. Some genes could be classified into more than one category. Thus, classification

was performed sequentially, and every gene was assigned to only one category (e.g., gene classified as ‘‘ion channel’’ cannot be

classified as ‘‘synaptic genes,’’ see below). Gene classifications were based on gene groups (GG) and gene ontology (GO) annota-

tions obtained from FlyBase (release 6.29). Annotations for cell adhesion molecules were obtained from FlyXCDB (http://prodata.

swmed.edu/FlyXCDB; Pei et al., 2018). Functional categories were defined in following order: (1) ribosomal proteins (from GG); (2)

transcription factors (from GG); (3) RNA binding proteins (from GO, term GO:0003723; excluding ribosomal proteins (GG), translation

factors (GG) and tRNA genes (GG)); (4) non-coding RNA genes (based on gene annotations); (5) cell adhesion molecules (from

FlyXCDB, protein domains: Ig, EGF, LRR, fn3, Cadherin); (6) receptor and ligands (from GG, groups: ‘‘transmembrane receptors,’’

‘‘receptor ligands’’). (7) ion channels (from GG); (8) synaptic genes (from GO, GO:0007268).
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